
Supporting Situationally Aware Cybersecurity Systems

30th September 2015

Zareen Syed, Tim Finin, Ankur Padia and Lisa Mathews

University of Maryland Baltimore County

1000 Hilltop Circle, MD, USA 21250

zsyed@umbc.edu, finin@cs.umbc.edu, pankur1@umbc.edu,

math1@umbc.edu

Summary

In this report, we describe the Unified Cyber Security ontology (UCO) to support situ-

ational awareness in cyber security systems. The ontology is an effort to incorporate

and integrate heterogeneous information available from different cyber security sys-

tems and most commonly used cyber security standards for information sharing and ex-

change. The ontology has also been mapped to a number of existing cyber security

ontologies as well as concepts in the Linked Open Data cloud. Similar to DBpedia

which serves as the core for Linked Open Data cloud, we envision UCO to serve as the

core for the specialized cyber security Linked Open Data cloud which would evolve

and grow with the passage of time with additional cybersecurity data sets as they be-

come available. We also present a prototype system and concrete use-cases supported

by the UCO ontology. To the best of our knowledge, this is the first cyber security

ontology that has been mapped to general world ontologies to support broader and di-

verse security use-cases. We compare the resulting ontology with previous efforts, dis-

cuss its strengths and limitations, and describe potential future work directions.

1 Introduction

Cybersecurity data and information is generated by different tools, sensors and systems,

expressed using different standards and formats, published by different sources and of-

ten scattered as isolated pieces of information. Furthermore, cybersecurity data is avail-

able in structured, semi-structured and unstructured forms from both, internal sources

i.e. within the organization, and external sources i.e. outside the organization. Unifying

such scattered information will help provide better visibility and situational awareness

to cybersecurity analysts. Also, such unification can support deep investigation and

help transition from reactive approach to a more proactive and eventually a predictive

approach.

Semantic Web technologies provide a common framework that allows data to be

shared and reused across application, enterprise as well as community boundaries. Se-

mantic Web languages such as RDF and OWL enable representing meaning by repre-

senting things or concepts rather than strings of words. They provide rich constructs to

represent information that is not only machine readable but also machine understanda-

ble, thus aiding in semantic integration and sharing of information from heterogeneous

sources. OWL language has constructs for defining mappings between classes and in-

stances which aides in linking internal information to external knowledge sources, thus

making available a larger pool of knowledge and helping in providing a more complete

picture and situational awareness.

Semantic Web technologies represent real world entities as concepts rather than

strings, as strings are lexical and ambiguous. Concepts are associated with a globally

unique identifier called “uri”. For example, the string “Georgia” may refer to “Georgia

state” in the United States or “Georgia country” (Figure 1). Furthermore, concepts can

be associated with attributes and can have relations with other concepts. The attributes

and relations build up context for the concept. For example “Georgia country” can have

“longitude” and “latitude” as attributes, which provide information about its location

on the map and its neighboring countries. Moreover, such information can be used to

make inference. For example, If an incident originates from “Georgia country” and it’s

a neighbor of Russia, it may raise more alarms as most cybersecurity attacks have orig-

inated from Russia in the past (Figure 2). Furthermore, these relations can help in con-

necting the dots and relating incidents with other similar incidents providing more in-

sight into the source and motivation for the attack.

Fig. 1. Things vs. Strings, “Strings” are ambiguous and can refer to different concepts in the real

world. “Things” are precise and reference unique concepts using “uri” (Uniform Resource Iden-

tifier).

Fig. 2. Semantic Relations enable supporting complex security use-cases, for example, if “Geor-

gia_(country)” has “neighbor” relation with “Russia” it may raise more alarms for a cybersecurity

incident.

Semantic technologies are used and supported by Big Data companies like Google,

Microsoft, Facebook and Apple for information sharing and interoperability and sup-

porting high level functions like analyzing queries, providing semantic search and an-

swering questions. In order to achieve situational awareness, cybersecurity systems

need to transition to produce and consume semantic information about likely entities,

relations, actions, events, intentions and plans. Through this seedling project we have

developed Unified Cybersecurity Ontology (UCO) as an effort to help evolve the cy-

bersecurity standards from a syntactic representation to a more semantic representation.

1.1 Contributions

We see several contributions that our work has to offer:

1. We have developed a comprehensive catalogue of cybersecurity standards that

we surveyed and reviewed, the catalogue is included in Appendix A.

2. We have developed the UCO ontology which provides a common understand-

ing of cybersecurity domain and unifies most commonly used cybersecurity

standards.

3. Compared to existing cybersecurity ontologies which have been developed in-

dependently, UCO has also been mapped to a number of existing publicly

available cybersecurity ontologies to promote ontology sharing, integration

and re-use.

4. UCO is the first cybersecurity ontology to map concepts to general world

knowledge sources i.e. Linked Open Data to support diverse use-cases.

5. We describe important use-cases that can be supported by unifying cyberse-

curity data and existing general world knowledge through the UCO ontology.

This report is organized as follows, in section 2 we outline our approach to ontology

construction and describe the UCO ontology and other related ontologies. In section 3

we present the design and implementation of a demo system that uses the UCO ontol-

ogy to support a number of use-cases with real world cybersecurity data. We review

existing work in section 4 and conclude with future work directions in section 5.

2 Approach

Our approach to support cyber-situational awareness has been through the development

of a core cybersecurity ontology that facilitates data sharing across different formats

and standards and allows reasoning to infer new information. We have surveyed, re-

viewed and cataloged existing cybersecurity standards and ontologies and selected the

most common and widely used standards to incorporate in the UCO ontology. In this

section, we first briefly outline the advantages of using semantic web languages in more

detail and describe the UCO ontology along with it’s design considerations. We also

describe the feasibility to support diverse and complex use-cases by linking cybersecu-

rity information to external knowledge sources.

2.1 Advantages of RDF, RDFS and OWL

RDF is a directed graph and unambiguous compared to XML, which is tree based and

has multiple representation for the same information. As RDF and OWL have formal

semantics grounded in first order logic they are more preferable for dealing with secu-

rity situations. RDF and OWL have a decentralized philosophy which allows incremen-

tal building of knowledge, and its sharing and reuse. For example, properties can be

defined separately from classes (unlike OOP). OWL facilitates information integration

by providing rich semantic constructs for schema mapping such as Sub Class, Sub Prop-

erty, Equivalent Class, Equivalent Property, Same As, Union Of, Intersection Of etc.

Furthermore, OWL has powerful reasoners, which enable detecting inconsistencies

during data sharing. For example, if there is a constraint for two classes, “Malware”

and “Virus”, to be disjoint and the data sets imported from different sources mention

the same software to be both a Malware and Virus, in such cases the reasoner will infer

an inconsistency. In addition, with the support of off-the-shelf reasoners, like Fact++

new facts can be inferred from the given facts. There are powerful reasoners available

both as Open Source Software and Commercial products.

2.2 Unified Cyber Security Ontology

The Unified Cybersecurity Ontology (UCO) is an extension to Intrusion Detection Sys-

tem ontology (IDS) [UN04b] developed earlier by our group to describe events related

to cybersecurity. Our group has been working on a number of projects that focus on

individual components of a unified cybersecurity framework to analyze different data

streams and assert facts in a triple store. The UCO ontology is essential for unifying

information from heterogeneous sources and supporting reasoning and rule writing.

The ontology supports reasoning and inferring new information from existing infor-

mation. The ontology also supports capturing specialized knowledge of a cybersecurity

analyst using ontology classes and terms as well as rules. Figure 3 shows a generic rule

which uses terms from the ontology. The rule connects information which is external

to the organization network with the evidences and network information available

within the organization to alert the host.

Fig. 3. The UCO ontology facilitates writing generic rules and combining evidence from multiple

sources.

UCO ontology provides a common understanding of cybersecurity domain and maps

to top level classes defined in STIX (Structured Threat Information eXpression) archi-

tecture and schema. STIX is the most comprehensive effort to unify cybersecurity in-

formation sharing and enables extensions by incorporating vocabulary from several

other standards. However, in STIX the information is represented in XML and therefore

cannot support reasoning which is supported by UCO. We have created Unified Cyber-

security Ontology as a semantic version of STIX. In addition to mapping to STIX, UCO

has also been extended with a number of relevant cybersecurity standards, vocabularies

and ontologies such as CVE, CCE, CVSS, CAPEC, CYBOX, KillChain and STUCCO.

To support diverse use-cases, UCO ontology has been mapped to general world

knowledge available through Google’s knowledge graph, DBpedia knowledge base,

Yago knowledge base etc. Linking to these knowledge sources provides access to large

number of datasets for different domains (for e.g. geonames) as well as terms in differ-

ent languages (e.g Russian).

Below we describe the list of important classes present in UCO ontology:

1. Means

The ‘means’ class describes various methods of executing an attack. For instance, the

‘means’ class consists of sub-classes like ‘BufferOverFlow’, ‘synFlood’, ‘LogicEx-

ploit’, ‘tcpPortScan’, etc., which can further consist of their own sub-classes.

2. Consequences

The ‘consequences’ class describes the possible outcomes of an attack. The ‘conse-

quences’ class consists of sub-classes like ‘DenialOfService’, ‘LossOfConfiguration’,

‘PrivilegeEscalation’, ‘UnauthUser’, etc.

3. Address

The ‘address’ class represents the address of the machine expressed using IPV4 or

IPV6.

4. AttackPattern

Attack Patterns are descriptions of common methods for exploiting software providing

the attacker’s perspective and guidance on ways to mitigate their effect. An example of

attack pattern is “Phishing”.

5. CCE

The CCE class is a top level class mapped to CCE ontology that we developed inde-

pendently. The CCE ontology represents the Common Configuration Enumeration

standard which assigns unique entries (called CCEs) to common system configuration

issues.

6. CVE

The CVE class is a top level class mapped to CVE ontology that we developed inde-

pendently. CVE is a dictionary of publicly known information on security vulnerabili-

ties and exposures. CVE’s common identifiers enable data exchange between security

products and provide a baseline index point for evaluating coverage of tools and ser-

vices.

7. CVSS

The CVSS class is a top level class mapped to CVSS ontology that we developed inde-

pendently. The Common Vulnerability Scoring System (CVSS) is an open framework

for communicating the characteristics and severity of software vulnerabilities.

8. Weakness

The Weakness class maps to CWE ontology that we developed independently. The

Common Weakness Enumeration (CWE) is a formal list of software weakness types

created to serve as a common language for describing software security weaknesses in

architecture, design, or code.

9. Exploit

This class characterizes description of an individual exploit and maps to ‘ExploitType’

in STIX schema.

10. Exploit Target

Exploit Targets are vulnerabilities or weaknesses in software, systems, networks or

configurations that are targeted for exploitation by the TTP (cyber threat adversary Tac-

tic, Technique or Procedure).

11. File

The File class represents a file and it’s properties on a computer system.

12. Hardware

Represents hardware component of the computer.

13. Indicator

A cyber threat indicator is made up of a pattern identifying certain observable condi-

tions as well as contextual information about the patterns meaning, how and when it

should be acted on, etc. This class is mapped to “IndicatorType” in STIX schema and

“Indicator” class in CAPEC ontology.

14. Kill Chain

This class is mapped to the top class of Kill chain ontology. Network intrusions can be

seen as a series of actions taken in sequence, each relying on the success of the last.

Stages of the intrusion progress linearly - starting with initial reconaissance and ending

in compromise of sensitive data. These concepts are useful in coordinating defensive

measures and defining the behavior of malicious actors. For instance, the behavior of a

financially motivated intruder may appear similar to an espionage-motivated one until

the final stage where they execute actions to steal their preferred type of information

from the target. This concept is often called a "kill chain" or a "cyber attack lifecycle".

15. Malware

This class represents Malware instances.

16. Network state

This class is used to capture network related properties.

17. OSVDB

This class represents instances of open source vulnerability database. OSVDB is an

independent and open-sourced database with information on security vulnerabilities.

18. Process

This class represents computer processes and associated properties such as code size,

open ports, open files, child processes etc.

19. Source

This class represents information source like domain expert, IDPS or Web.

20. Attacker

This class represents identification or characterization of the adversary and is mapped

to “ThreatActor” in STIX.

21. Means

The Means class maps to TTP in STIX. The TTP field characterizes specific details of

observed or potential attacker Tactics, Techniques and Procedures.

22. KillChain Phase

This class maps to “KillChainPhase” in STIX and characterizes an individual phase

within a kill chain definition.

23. Attack

This class Identifies or characterizes a single cyber threat attack and is mapped to “In-

cident” in STIX.

Table 1. Statistics for UCO and related ontologies created in this seedling project.

 CCE CVE CVSS UCO Total

Axiom 11 21 197 633 862

Class Count 1 3 35 106 145

Object Prop-

erty Count

0 2 32 59 93

Data Prop-

erty Count

5 6 3 45 59

Individual

Count

0 0 23 7 30

Equivalent

classes

0 0 3 16 19

DL Expres-

sivity

AL ALUHO

(D)

ALUHOQ

(D)

ALCROIQ

(D)

Table 2. Statistics for existing Cybersecurity Ontologies that have been mapped to UCO.

 Capec Cybox Cybox

Com-

mon

Data

Mark-

ing

Kill

Chain

MAEC STIX

Axiom 7915 296 117 2 63 2 8808

Class Count 1219 21 10 1 12 1 1303

Object

Property

Count

6 22 5 0 5 0 114

Data Prop-

erty Count

3 19 13 0 0 0 47

Individual

Count

10 70 25 0 0 0 91

Equivalent

Class

2 4 2 0 26 0 17

DL Expres-

sivity

AL

CHO

(D)

AL

UOQ

(D)

AL

UOQ

(D)

AL SIQ AL SHOIQ(

D)

The statistics for UCO and related ontologies that have been created as a part of this

seedling project are given in Table 1. Statistics related to other existing cybersecurity

ontologies to which UCO has been mapped, are given in Table 2. These ontologies are

independent and do not have any overlapping classes. However, to generate a connected

graph, the UCO ontology has a few classes representing parent class of each of the other

ontology. Such a design allows easy maintenance of the ontology. As different ontolo-

gies are loosely coupled each of the ontology can evolve independently. As shown in

table 1, CCE contains a class and 5 data type properties like description, references,

platform etc. CVSS, ontology contained 35 classes and includes classes like base

group, environmental group and temporal group, which are represented as the combi-

nation of other classes. Such an increase in number of class was possible as the XML

schema was rich in semantics. Some of the individuals of CVSS were associated with

more than one class. For example, “High” and “Low”, individuals were assigned to

“Modified Attack Complexity” and “Attack Complexity” making it count 4 individual

assertions instead of 2. As compared to other ontologies, we designed UCO to consid-

erably extend STIX framework with additional classes and defined relations among

them. For example “IPAddress”, “Software”, “WebBrowser” are a few classes with

“WebBrowser” being the subclass of “Software”. Moreover, there are 16 classes in the

ontology which are defined as the combination of other classes. For example, “Product”

is represented as the union of “Software” and “Hardware”.

Fig. 4. UCO ontology serves as the core for Cybersecurity Linked Open Data Cloud.

Figure 4 shows UCO ontology serving as the core ontology for linking with other

cybersecurity ontologies and LOD cloud. To facilitate data integration from multiple

freely available knowledge base, we mapped UCO to Linked Open Data (LOD) cloud.

Such an extension allows a client to fetch data from multiple freely available data

sources with different schema but represented using semantic web technologies. An

example of such a mapping is shown below:

uco:acrobat_reader owl:sameAs dbr:Adobe_Acrobat

Here, “uco:” is the namespace used for Unified Cybersecurity Ontology and the

mapping asserts the Adobe Acrobat from DBpedia and the acrobat reader present in our

ontology to be same.

3 Demo and Use-Cases

To demonstrate the benefits and effectiveness of the UCO ontology we have designed

and implemented a number of use-cases with real world cybersecurity data. Below we

describe our prototype system design and present a number of implemented use-cases.

3.1 Prototype System Design

To perform experiments we used STUCCO extractors1 to extract entities from the

NVD XML file. We developed our code to combine the extracted terms and associate

each term with corresponding object to generate <subject, predicate, object> tuples. We

support federated queries permitting data integration from multiple sources like DBpe-

dia and Yago. We defined necessary mappings from terms in NVD data to DBpedia

and our unified ontology. We enabled the reasoner of Fuseki server, to support reason-

ing.

Fig. 5. Advanced use-cases that can be supported using mappings between UCO and general

world ontologies

3.2 Unified Cybersecurity Ontology Use-Cases

In figure 5 we show several advanced use-cases that can be supported using mappings

between UCO and general world ontologies that cannot be supported by individual on-

tologies alone. Below we describe each individual use-cases and present corresponding

SPARQL queries. We also show a snippet of results obtained by executing the same

query over sample NVD data set that was loaded into fuseki triple store.

Use-Case #1: Vulnerabilities associated with PDF Readers

1 We are thankful to the authors for sharing useable code on github https://github.com/stucco/

An organization or a security analyst may be interested in finding out what kind of

vulnerabilities may be associated with a specific type of software. The CVE entries

only mention software, however if these software are linked to external knowledge

sources such as Google’s knowledge graph or DBpedia, one can also retrieve the asso-

ciated type of software. For example, from CVE we have the information that “Adobe

Acrobat” has a certain vulnerability identified with CVE entry reference “CVE-2015-

5115”. Mapping “Adobe Acrobat” instance to the corresponding instance in DBpedia

resource will provide additional information that it is a type of “Yago:PDFReaders”.

This mapping with enable answering queries asking for vulnerabilities associated with

specific category of software such as PDF readers and can also suggest alternate soft-

ware of the same type that do not have a specific vulnerability. The following SPARQL

query demonstrates this use-case.

Use-Case #2: Vulnerabilities associated with products from a given company

Another interesting use-case is to explore vulnerabilities associated with products from

a given company. Again by mapping software instances to external knowledge sources,

one can find the name of the company which developed the software. The following

SPARQL query retrieves vulnerabilities for products along with information about the

source company.

Use-Case #3: Suggest similar software to given software

After knowing information about a certain vulnerability a security analyst may be in-

terested in finding alternate software that doesn’t have the given vulnerability. For ex-

ample in case of a PDF readers the following SPARQL query retrieves software of the

same type filtering out “acrobat” software.

Use-Case #4: Assess impact of changing vendors

In case an organization is interested in changing venders, they can assess the impact by

using the following SPARQL query which creates a summary of vulnerability counts

associated with products from different vendors.

4 Related Work

One of the earliest efforts for developing ontologies for cybersecurity was by our group

in 2003 by Undercoffer et al. They implemented a target centric ontology for the do-

main of intrusion detection composed of 23 classes and 190 properties and attributes.

More et al. (2012) from our group extended this IDS ontology to incorporate and inte-

grate cybersecurity related information from heterogenous sources. The UCO ontology

is a further extension and enhancement of the IDS ontology to represent and map dif-

ferent publicly available standards and ontologies in the cybersecurity domain. STIX is

the most comprehensive standard to unify cybersecurity information sharing and ena-

bles extensions by incorporating vocabulary from several other standards. Ulicny et al.

(2014) created a STIX ontology based on the STIX schema along with a number of

related ontologies. We have defined mappings between UCO and STIX ontology clas-

ses. Iannacone et al. (2015) developed STUCCO ontology for integrating different

structured and unstructured data sources along with data extractors. The ontology is

composed of 15 entity types and 115 properties and is defined using JSON-schema. We

translated STUCCO from JSON to OWL in order to map it to UCO ontology. We came

across a significant number of papers on using ontologies for cyber security, however,

the ontology or the details were not discussed in sufficient depth to enable reuse.

5 Conclusions and Future Work Directions

The UCO ontology provides a common understanding of cybersecurity domain and

unifies most commonly used cybersecurity standards. Unlike existing independent and

isolated cybersecurity ontologies, UCO has been mapped to publicly available ontolo-

gies in the cybersecurity domain and hence offers more coverage. In addition to that,

UCO is also mapped to concepts in general world knowledge sources to support diverse

use-cases. To the best of our knowledge this is the first such effort in the area of cyber-

security ontologies to unify cybersecurity information with general world knowledge

about entities and relations. The different use-cases discussed demonstrate the utility

and value of the UCO ontology in supporting diverse security scenarios. We briefly

discuss promising future work directions below.

5.1 Temporal Representation and Reasoning

Cybersecurity data and information may have a temporal component for example

timestamps associated with files, system logs and network events etc. The current ver-

sion of UCO ontology uses a very basic representation of time and is represented as a

data property associated with classes that represent events. In the future, we plan to

represent time instances and intervals. A number of frameworks and representations

have been proposed in research such as OWL-Time [HO04] and time-entry [PA04]

which provide vocabularies for stating facts about temporal instants and intervals. Fu-

ture work directions include reviewing different approaches, identifying and analyzing

shortcomings and encountered challenges followed by the choice of suitable represen-

tation to extend UCO ontology.

5.2 Modeling Uncertainty and Confidence

While ontologies are widely used to capture the knowledge about concepts and their

relations defined in a domain for information exchange and knowledge sharing requires

crisp logic i.e. any sentences in these languages, being asserted facts, domain

knowledge, or reasoning results, must be either true or false and nothing in between.

However, most of the real world domains contain uncertain knowledge because of in-

complete or partial information that is true only to a certain degree. Probability theory

is a natural choice for dealing with this kind of uncertainty. Incorporating probability

theory into existing ontology languages will strengthen these languages with additional

expressive power to quantify the degree of overlap or inclusion between concepts, to

support probabilistic queries such as finding the most similar concept that a given de-

scription belongs to, and to make more accurate semantic integration possible.

5.3 Cybersecurity Information Extraction from Unstructured Data

Cybersecurity vulnerabilities are typically identified and published publicly but re-

sponse has always been slow in covering up these vulnerabilities because there is no

automatic mechanism to understand and process this unstructured text that is published

on internet. There is a strong need for systems that can automatically analyze unstruc-

tured text and extract vulnerability entities and concepts from various non-traditional

unstructured data sources such as Cybersecurity blogs, security bulletins and hackers

forums. This information extraction task will help expediting the process of understand-

ing and realizing the vulnerabilities and thus making systems secure at faster rate. We

have developed a number of preliminary prototype systems for cybersecurity infor-

mation extraction in our lab that can be further refined and extended to support situa-

tional awareness.

6 References

[HA13a] Lushan Han, Tim Finin, Paul McNamee, Anupam Joshi, and Yelena Yesha, Improv-

ing Word Similarity by Augmenting PMI with Estimates of Word Polysemy, IEEE Trans-

actions on Knowledge and Data Engineering, IEEE Computer Society, v25n6, pp. 1307-

1322, 2013.

[HA15] Lushan Han, Tim Finin, Anupam Joshi and Doreen Cheng, Querying RDF Data with

Text Annotated Graphs, 27th Int. Conf. on Scientific and Statistical Database Management,

San Diego, June 2015.

[JO13] Arnav Joshi, Ravendar Lal, Tim Finin and Anupam Joshi, Extracting cybersecurity

related linked data from text, 7th IEEE Int. Conf. on Semantic Computing, September 2013.

[LA13] Ravendar Lal, "Information Extraction of Security related entities and concepts from

unstructured text.", M.S. Thesis, University of Maryland Baltimore County, May 2013.

[LI15] Wenjia Li, Anupam Joshi and Tim Finin, SVM-CASE: An SVM-based Context Aware

Security Framework for Vehicular Ad-hoc Networks, IEEE 82nd Vehicular Technology

Conf., Boston, Sept. 2015.

[MA12] M. Lisa Mathews, Paul Halvorsen, Anupam Joshi and Tim Finin, A Collaborative

Approach to Situational Awareness for CyberSecurity, 8th IEEE Int. Conf. on Collaborative

Computing: Networking, Applications and Worksharing, Pittsburgh PA, 14-17 Oct 2012.

[MA14] James Mayfield, Paul McNamee, Craig Harman, Tim Finin and Dawn Lawrie, Kel-

vin: Extracting Knowledge from Large Text Collections, AAAI Fall Symposium on Natural

Language Access to Big Data, Nov. 2014.

[MO12a] Sumit More, Mary Mathews, Anupam Joshi, and Tim Finin, A Semantic Approach

to Situational Awareness for Intrusion Detection, National Symposium on Moving Target

Research, June 2012.

[MO12b] Sumit More, Mary Mathews, Anupam Joshi and Tim Finin, A Knowledge-Based

Approach To Intrusion Detection Modeling, IEEE Workshop on Semantic Computing and

Security, pp. 75-81, IEEE Computer Society, May 2012.

[MU11] Varish Mulwad, Wenjia Li, Anupam Joshi, Tim Finin, and Krishnamurthy Viswana-

than, Extracting Information about Security Vulnerabilities from Web Text, Web Intelli-

gence for Information Security Workshop, IEEE Computer Society Press, August 2011,

[MU13] Varish Mulwad, Tim Finin and Anupam Joshi, Semantic Message Passing for Gen-

erating Linked Data from Tables, 12th Int. Semantic Web Conf., Sydney, Oct. 2013.

[SH13] Puneet Sharma, Anupam Joshi and Tim Finin, Detecting Data Exfiltration by Inte-

grating Information Across Layers, IEEE 14th Int. Conf. on Information Reuse and Integra-

tion, 2013.

[SL14] Jennifer Sleeman and Tim Finin, Taming Wild Big Data, AAAI Fall Symposium on

Natural Language Access to Big Data, Nov. 2014.

[SL15] Jennifer Sleeman and Tim Finin and Anupam Joshi, Entity Type Recognition for Het-

erogeneous Semantic Graphs, AI Magazine, v36n1, pp. 75-86, April 2015, AAAI Press.

[ST12] Veselin Stoyanov, James Mayfield, Tan Xu, Douglas W. Oard, Dawn Lawrie, Tim

Oates and Tim Finin, A Context-Aware Approach to Entity Linking, Joint Workshop on

Automatic Knowledge Base Construction and Web-scale Knowledge Extraction, NAACL-

HLT, June 2012.

[SY15] Zareen Syed, Lushan Han, Muhammad Rahman, Tim Finin, James Kukla, Jeehye

Yun, UMBC_Ebiquity-SFQ: Schema Free Querying System, Schema-agnostic Queries Se-

mantic Web Challenge, 12th Extended Semantic Web Conference, Portoroz Slovenia, June

2015. Note: Received 2015 ESWC Schema Agnostic Query Challenge Award.

[UN03] Jeffrey Undercoffer, John Pinkston, Anupam Joshi and Timothy Finin, A Target-

Centric Ontology for Intrusion Detection, IJCAI Workshop on Ontologies and Distributed

Systems, Aug. 2003, Acapulco MX.

[UN04a] J. Undercofer, Intrusion Detection: Modeling System State to Detect and Classify

Aberrant Behavior, Ph.D. dissertation, Computer Science and Electrical Engineering, Uni-

versity of Maryland, Baltimore County, February 2004.

[UN04b] Jeffery Undercoffer, Anupam Joshi, Tim Finin and John Pinkston, A Target Centric

Ontology for Intrusion Detection: Using DAML+OIL to Classify Intrusive Behaviors,

Knowledge Engineering Review, Special Issue on Ontologies for Distributed Systems,

2004.

[WO15] Travis Wolfe, Mark Dredze, James Mayfield, Paul McNamee, Craig Harman, Tim

Finin and Benjamin Van Durme, Interactive Knowledge Base Population,

arXiv:1506.00301, 2015

7 Appendix - A

Catalogue of Cybersecurity Standards

1. High level descriptions and frameworks

1.1 Structured Threat Information eXpression (STIX)

1.2 Open Vulnerability and Assessment Language (OVAL)

1.3 The Vocabulary for Event Recording and Incident Sharing (VERIS)

1.4 The Incident Object Description Format (IODEF)

2. Actionable observables

2.1 Cyber Observables eXpression (CybOX)

2.2 Mandiant’s Open Indicators of Compromise (OpenIOC)

2.3 Malware Attribute Enumeration and Characterization (MAEC)

3. Enumerations

3.1 Common Attack Pattern Enumeration and Classification (CAPEC)

3.2 Common Vulnerabilities and Exposures (CVE)

3.3 Common Weakness Enumeration (CWE)

3.4 The Common Configuration Enumeration (CCE)

3.5 Common Platform Enumeration (CPE)

4. Scoring and measurement frameworks

4.1 Common Vulnerability Scoring System (CVSS)

4.2 Common Weakness Scoring System (CWSS)

4.3 The Extensible Configuration Checklist Description Format (XCCDF)

4.4 Common Configuration Scoring Scheme (CCSS)

5. Process frameworks

5.1 The Security Content Automation Protocol (SCAP)

5.2 Cybersecurity Information Exchange, Recommendation ITU-T

X.1500 (CYBEX)

6. Transport

6.1 Trusted Automated eXchange of Indicator Information (TAXII)

6.2 The OASIS Customer Information Quality (CIQ)

Catalog of Cybersecurity Standards

1. High level descriptions and frameworks

These standards combine multiple types of information for e.g. including indicators,

affected assets, actions that were taken, and other contextual information.

1.1 Structured Threat Information eXpression (STIX)

STIX™ is a collaborative community-driven effort to define and develop a stand-

ardized language to represent structured cyber threat information. The STIX Language

intends to convey the full range of potential cyber threat information and strives to be

fully expressive, flexible, extensible, automatable, and as human-readable as possible.

STIX provides a unifying architecture tying together a diverse set of cyber threat infor-

mation including:

1. Cyber Observables

2. Indicators

3. Incidents

4. Adversary Tactics, Techniques, and Procedures (including attack patterns, mal-

ware, exploits, kill chains, tools, infrastructure, victim targeting, etc.)

5. Exploit Targets (e.g., vulnerabilities, weaknesses or configurations)

6. Courses of Action (e.g., incident response or vulnerability/weakness remedies

or mitigations)

7. Cyber Attack Campaigns

8. Cyber Threat Actors

Overseeing Organization: STIX is being transitioned from MITRE and DHS to

OASIS.

1.2 Open Vulnerability and Assessment Language (OVAL)

OVAL is an information security community effort to standardize how to assess

and report upon the machine state of computer systems. OVAL includes a language to

encode system details, and an assortment of content repositories held throughout the

community. Tools and services that use OVAL for the three steps of system assessment

— representing system information, expressing specific machine states, and reporting

the results of an assessment — provide enterprises with accurate, consistent, and ac-

tionable information so they may improve their security. Use of OVAL also provides

for reliable and reproducible information assurance metrics and enables interoperability

and automation among security tools and services.

Overseeing Organization: OVAL has been transitioned from MITRE to Center

for Internet Security (CIS).

1.3 The Vocabulary for Event Recording and Incident Sharing (VERIS)

The Vocabulary for Event Recording and Incident Sharing (VERIS) is a metrics

framework designed to provide a common language for describing security incidents

and their effects in a structured manner. The difference between STIX incidents and

VERIS is in purpose and use: VERIS is an after-the-fact characterization of cyber inci-

dents intended for post-incident strategic trend analysis and risk management. STIX

provides the capability to capture information about security incidents and their effects

but does so in the context of a broader threat intelligence framework.

Overseeing Organization: Verizon

1.4 The Incident Object Description Format (IODEF)

The Incident Object Description Format (IODEF) is an Internet Engineering Task

Force (IETF) standard developed for exchange of incident information. There is no

formal relationship between STIX and IODEF, although it is possible to leverage

IODEF within STIX in order to represent incident information. Doing so, however,

would lose the richness and architectural alignment provided by the STIX Incident

structure.

Overseeing Organization: IETF, Managed Incident Lightweight Exchange

(MILE) working group

2. Actionable observables

Standards for cyber observables represent information used to detect attacks or ma-

licious activity (such as system libraries used by a malware). A cyber observable is a

measurable event or stateful property in the cyber context. Examples of measurable

events include registry key creation, file deletion, and the sending of an HTTP GET

request; examples of stateful properties include the MD5 hash of a file, the value of a

registry key, and the name of a process.

2.1 Cyber Observables eXpression (CybOX)

The Cyber Observable eXpression is a standardized schema for the specification,

capture, characterization and communication of events or stateful properties that are

observable in the operational domain. A wide variety of high-level cyber security use

cases rely on such information including: event management/logging, malware charac-

terization, intrusion detection, incident response/management, attack pattern character-

ization, etc. CybOX provides a common mechanism (structure and content) for address-

ing cyber observables across and among this full range of use cases improving con-

sistency, efficiency, interoperability and overall situational awareness. STIX leverages

CybOX for this purpose, such as in indicator patterns, infrastructure descriptions, and

course of action parameters.

Overseeing Organization: Cybox is being transitioned from MITRE to OASIS.

2.2 Mandiant’s Open Indicators of Compromise (OpenIOC)

The STIX Indicator's test mechanism field is an extensible alternative to providing

an indicator signature in something other than CybOX. Mandiant’s Open Indicators of

Compromise, Open Vulnerability and Assessment Language (OVAL), SNORT rules,

and YARA rules are supported as default extensions to that test mechanism field.

Overseeing Organization: MANDIANT

2.3 Malware Attribute Enumeration and Characterization (MAEC)

MAEC is a standardized language for encoding and communicating high-fidelity

information about malware based upon attributes such as behaviors, artifacts, and attack

patterns. By eliminating the ambiguity and inaccuracy that currently exists in malware

descriptions and by reducing reliance on signatures, MAEC aims to improve human-

to-human, human-to-tool, tool-to-tool, and tool-to-human communication about mal-

ware; reduce potential duplication of malware analysis efforts by researchers; and allow

for the faster development of countermeasures by enabling the ability to leverage re-

sponses to previously observed malware instances. STIX leverages MAEC via the TTP

construct for this purpose, and additionally both STIX and MAEC use CybOX.

Overseeing Organization: MITRE, DHS

3. Enumerations

Enumerations define global identifiers to reference shared data objects for e.g.

Common Vulnerabilities and Exposures (CVE).

3.1 Common Attack Pattern Enumeration and Classification (CAPEC)

CAPEC is a publicly available, community developed list of common attack pat-

terns along with a comprehensive schema and classification taxonomy. Attack patterns

are descriptions of common methods for exploiting software systems. They derive from

the concept of design patterns applied in a destructive rather than constructive context

and are generated from in-depth analysis of specific real-world exploit examples. STIX

can utilize Common Attack Pattern Enumeration and Classification (CAPEC) for struc-

tured characterization of tactics, techniques, and procedures (TTP) attack patterns

through use of the CAPEC schema extension.

Overseeing Organization: MITRE, DHS

3.2 Common Vulnerabilities and Exposures (CVE)

CVE is a dictionary of publicly known information security vulnerabilities and ex-

posures. CVE’s common identifiers enable data exchange between security products

and provide a baseline index point for evaluating coverage of tools and services.

Overseeing Organization: MITRE, DHS

3.3 Common Weakness Enumeration (CWE)

CWE provides a unified, measurable set of software weaknesses that is enabling

more effective discussion, description, selection, and use of software security tools and

services that can find these weaknesses in source code and operational systems as well

as better understanding and management of software weaknesses related to architecture

and design.

Overseeing Organization: MITRE, DHS

3.4 The Common Configuration Enumeration (CCE)

The Common Configuration Enumeration, or CCE, assigns unique entries (also

called CCEs) to configuration guidance statements and configuration controls to im-

prove workflow by facilitating fast and accurate correlation of configuration issues pre-

sent in disparate domains. In this way, it is similar to other comparable data standards

such as the Common Vulnerability and Exposure (CVE) List, which assigns identifiers

to publicly known system vulnerabilities.

Overseeing Organization: Transitioned from MITRE to NIST

3.5 Common Platform Enumeration (CPE)

Common Platform Enumeration (CPE) is a standardized method of describing and

identifying classes of applications, operating systems, and hardware devices present

among an enterprise's computing assets. CPE does not identify unique instantiations of

products on systems, such as the installation of XYZ Visualizer Enterprise Suite 4.2.3

with serial number Q472B987P113. Rather, CPE identifies abstract classes of products,

such as XYZ Visualizer Enterprise Suite 4.2.3, XYZ Visualizer Enterprise Suite (all

versions), or XYZ Visualizer (all variations).

Overseeing Organization: Transitioned from MITRE to NIST

4. Scoring and measurement frameworks

These standards define quantitative description of threats.

4.1 Common Vulnerability Scoring System (CVSS)

Common Vulnerability Scoring System (CVSS) is a free and open industry standard

for assessing the severity of computer system security vulnerabilities. It attempts to

establish a measure of how much concern a vulnerability warrants, compared to other

vulnerabilities, so efforts can be prioritized. The scores are based on a series of meas-

urements (called metrics) based on expert assessment. CVSS consists of three metric

groups: Base, Temporal, and Environmental. The Base group represents the intrinsic

qualities of a vulnerability, the Temporal group reflects the characteristics of a vulner-

ability that change over time, and the Environmental group represents the characteris-

tics of a vulnerability that are unique to a user's environment. The Base metrics produce

a score ranging from 0 to 10, which can then be modified by scoring the Temporal and

Environmental metrics. A CVSS score is also represented as a vector string, a com-

pressed textual representation of the values used to derive the score.

Overseeing Organization: It is under the custodianship of the Forum of Incident

Response and Security Teams (FIRST).

4.2 Common Weakness Scoring System (CWSS)

The Common Weakness Scoring System (CWSS) provides a mechanism for prior-

itizing software weaknesses in a consistent, flexible, open manner. It is a collaborative,

community-based effort that is addressing the needs of its stakeholders across govern-

ment, academia, and industry. CWSS standardizes the approach for characterizing

weaknesses. Users of CWSS can invoke attack surface and environmental metrics to

apply contextual information that more accurately reflects the risk to the software ca-

pability, given the unique business context it will function within and the unique busi-

ness capability it is meant to provide. This allows stakeholders to make more informed

decisions when trying to mitigate risks posed by weaknesses. CWSS is distinct from -

but not a competitor to - the Common Vulnerability Scoring System (CVSS). These

efforts have different roles, and they can be leveraged together.

Overseeing Organization: MITRE, DHS

4.3 The Extensible Configuration Checklist Description Format (XCCDF)

XCCDF was created to document technical and non-technical security checklists

using a standardized format. The general objective is to allow security analysts and IT

experts to create effective, interoperable automated checklists, and to support the use

of these checklists with a wide variety of tools. A checklist is an organized collection

of rules about a particular kind of system or platform. Automation is necessary for con-

sistent and rapid verification of system security because of the sheer number of things

to check and the number of hosts within an organization that need to be assessed (often

many thousands). XCCDF enables easier, more uniform creation of security checklists,

which in turn helps to improve system security by more consistent and accurate appli-

cation of sound security practices. Adoption of XCCDF lets security professionals, se-

curity tool vendors, and system auditors exchange information more quickly and pre-

cisely, and also permits greater automation of security testing and configuration assess-

ment. XCCDF development is being pursued by NIST, the NSA, The MITRE Corpo-

ration, and the US Department of Homeland Security. XCCDF is intended to serve as

a replacement for the security hardening and analysis documentation written in prose.

XCCDF is used by the Security Content Automation Protocol.

Overseeing Organization: NIST

4.4 Common Configuration Scoring Scheme (CCSS)

CCSS addresses software security configuration issue vulnerabilities. CCSS is

largely based on CVSS and CMSS, and it is intended to complement them.

Overseeing Organization: NIST

5. Process frameworks

These are frameworks for exchanging security information, they leverage formats

and protocols defined by other standards.

5.1 The Security Content Automation Protocol (SCAP)

The Security Content Automation Protocol (SCAP) is a method for using specific

standards to enable automated vulnerability management, measurement, and policy

compliance evaluation (e.g., FISMA compliance). The National Vulnerability Database

(NVD) is the U.S. government content repository for SCAP. SCAP combines a number

of open standards that are used to enumerate software flaws and configuration issues

related to security. They measure systems to find vulnerabilities and offer methods to

score those findings in order to evaluate the possible impact. It is a method for using

those open standards for automated vulnerability management, measurement, and pol-

icy compliance evaluation. SCAP defines how the following standards (referred to as

SCAP 'Components') are combined:

1. Common Vulnerabilities and Exposures (CVE)

2. Common Configuration Enumeration (CCE)

3. Common Platform Enumeration (CPE)

4. Common Weakness Enumeration (CWE)

5. Common Vulnerability Scoring System (CVSS)

6. Extensible Configuration Checklist Description Format (XCCDF)

7. Open Vulnerability and Assessment Language (OVAL)

Overseeing Organization: NIST

5.2 Cybersecurity Information Exchange, Recommendation ITU-T X.1500

(CYBEX)

Recommendation ITU-T X.1500 describes techniques for the exchange of security

information. It includes guidance in on several key functions related to information

exchange: structuring security information, identifying security information and enti-

ties; establishment of trust between entities; requesting and responding with security

information; and assuring the integrity of the security information exchange.

Overseeing Organization: ITU-T

6. Transport

6.1 Trusted Automated eXchange of Indicator Information (TAXII)

TAXII (Trusted Automated eXchange of Indicator Information) is the main

transport mechanism for cyber threat information represented in STIX. Through the use

of TAXII services, organizations can share cyber threat information in a secure and

automated manner. Like STIX, TAXII is led by DHS and the STIX and TAXII com-

munities work closely together (and in fact consist of many of the same people) to en-

sure that they continue to provide a full stack for sharing threat intelligence.

Overseeing Organization: OASIS

6.2 The OASIS Customer Information Quality (CIQ)

The OASIS Customer Information Quality (CIQ) is a language for representing in-

formation about individuals and organizations. The STIX Identity structure uses an ex-

tension mechanism to represent identify information used to characterize malicious ac-

tors, victims and intelligence sources. The STIX-provided extension leverages CIQ.

CIQ Specifications enables organisations to have a unified and consistent representa-

tion and standardization of their party data (e.g. employee, members, suppliers, part-

ners, customers, etc) and use it to support various application requirements in the or-

ganisation that deal with party data (e.g. Master Data Management (MDM), Cus-

tomer/Party Data Integration, Party identification/recognition/identity management,

HR, billing, sales, marketing, data quality and integrity, e-commerce/e-business, party

data exchange, postal services, customer/party views, etc). By representing and man-

aging party data consistently using CIQ specifications as the base scheme for an organ-

isation, and extending it to support specific business requirements, unique identitifica-

tion, integration, standardisation, matching, synchonization and management of quality

party information/data is possible.

Overseeing Organization: OASIS

